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Redox flow batteries (RFBs) have gained intensive attention and are regarded as the ideal choice for
large-scale energy storage owing to their attractive features such as excellent electrochemical revers-
ibility, long life, high efficiency, and decoupling of energy and power density. lon-exchange membranes
in the flow battery act as a physical barrier to separate the positive and negative half-cell and allow
migration of charge-balancing ions from one side to the other to complete the internal circuit of the cell.
Certainly, the overall performance of the RFBs heavily depends on the properties of the ion-exchange
membranes. To prevent power loss and minimize the crossover of the active species, it is essential for
the ion-selective membrane to acquire high ionic conductivity to ensure low area specific resistance and
high selectivity. This review summarizes recent research advances on improvement methods to enhance
the selectivity of membranes in RFBs, mainly including the modifications on the pore size, hydrophilicity,
and some other aspects. The relationship between performances and structures of these membranes is
analyzed, and the advantages and limitations are discussed. Based on the recent advances, corresponding
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perspectives on future development in this field are also discussed.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, energy and environmental problems have been
challenging people all the time, requiring urgent exploitation and
utilization of clean energy [1]. However, most categories of clean
energy supply, such as solar energy, wind energy, and tidal energy,
are discontinuous so that peak load shaving is needed to be
implemented by large-scale energy storage devices [2,3]. Among
several energy storage technologies, low energy density in super-
capacitors, short cycling life in lead-acid cells, poor security in
sodium-sulfur cells, and high cost in lithium-ion batteries limited
their applications for large-scale energy storage [4,5].

In the redox flow battery (RFB), the energy-carrying redox-
active materials are stored in two separate external tanks and are
pumped to the cell stack during its operation [6]. The cell itself
consists of two sets of porous carbon electrodes separated by a
membrane. The electrodes provide the active sites to facilitate the
redox reaction of the electrolytes but do not participate in the redox
reaction. The unique mechanism of RFBs enables disintegration of
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the energy and power, allowing them to scale independently from
one another and enabling flexible design, extremely long lifetime,
extensive scalability, and safety [7,8]. Therefore, RFBs are regarded
as the most promising choice as they can improve the efficiency of
the existing grid infrastructure by providing safe and cost-effective
stationary storage at an acceptable cost together with a long life.

In recent decades, several systems of inorganic redox chemis-
tries, such as bromine/polysulfide [9], all-vanadium [10—12], va-
nadium/bromine [13—15], zinc/polyhalide [16—18], zinc/nickel
[19,20], zinc/iodine [21], vanadium/cerium [22], vanadium/man-
ganese (23], cobalt/vanadium [24], all-iron [25], lead/acid [26],
hydrogen/bromine [27], and polysulfide/polyiodide [28], have been
considered as the active materials for traditional and hybrid RFBs.
Among these available redox chemistries, the all-vanadium redox
flow battery (VRFB) is by far the most studied and most commer-
cialized redox chemistry owing to its long life [10—12]. However,
despite this remarkable success of RFBs as a viable technology for
large-scale energy storage, the extensive utilization of the RFBs has
been hindered by the high cost of the commonly used proton-
exchange membrane [29].

The membrane in RFBs not only separates the positive and
negative electrolytes to avoid short circuit but also conduct ions to
realize the current loop, which plays a decisive role in coulombic
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efficiency (CE) and energy efficiency (EE) of RFBs [30,31]. The
function of the membrane in RFBs and the important indicators are
illustrated in Fig. 1. As a kind of perfluorosulfonic cationic mem-
brane, a series of Nafion membranes produced by the Dupont
company provides high proton conductivity, and high chemical and
electrochemical stability, which is a common membrane for RFBs
[32—34]. However, the exorbitant price of Nafion membranes
hindered their extensive utilization in RFBs [35]. Thus, developing
more advanced membranes with both superior performances and
low cost always attracts the attention of researchers. This review
aims to summarize recent research advances on categories of the
improvement method on membranes to enhance the performance
of RFBs, mainly including the controlling of the pore size, hydro-
philicity, and some other aspects. By providing an overview of the
developments of membrane materials in RFBs, we hope to inspire
various ways to explore more advanced membranes with both high
performances and low cost.

2. Pore size modification

The porous membranes differ from traditional ion-exchange
membranes in a sense that the ion selectivity in porous mem-
branes is obtained either by size sieving or by Donnan's exclusion
because the stoke radii of vanadium ions are much larger than
those of the hydronium ions. The elimination of the ion-exchange
groups from the porous membrane overcomes the limitation
caused by the ion-exchange groups and significantly enhances the
stability of the membrane under harsh operating conditions of
VRFBs. The first ever porous membrane for VRFB application was
reported by Zhang et al. [36] using a hydrolyzed polyacrylonitrile
nanofiltration (NF) membrane with finger-like pores with an ul-
trathin top layer prepared by the phase inversion method (Fig. 2a).
The main concept lies in tuning the porosity of the membrane
to obtain higher selectivity between the protons and the vanadium
ions. The membrane demonstrated an efficiency of 95% at
80 mA cm 2, which remains stable for around 200 cycles,
demonstrating excellent chemical stability of the membrane. To
further improve the selectivity of the NF membrane, an idea of
introducing a thin layer of filler onto the membrane to reduce the
pore size was introduced by the same group [37]. The silica was
introduced onto the NF membrane to decrease the pore size and
thereby to enhance the selectivity by almost four times via in situ
hydrolysis of tetraethyl orthosilicate. The silica-modified NF
membranes exhibited a much higher CE of 98% at 80 mA cm 2,
which is even higher than the commercial Nafion 115. Besides, the
versatility of the concept was also verified by using the polysulfone
(PSF)/sulfonated poly(ether ether ketone) (SPEEK) blend that ob-
tained a CE of 97% at 80 mA cm 2 and an EE of 80% at 40 mA cm 2
(Fig. 2b) [37]. Overall, the silica-modified NF membranes demon-
strated better performance, but the stability of the membrane
remained unknown. The commercial Daramic polyethylene/silica
microporous membranes with an average pore size of 0.15 pm and
57% porosity were also used in an iron-vanadium RFB that yielded
an EE of ~70% [38,39].

Later on, a hydrophilic separator composed of agglomerated
silica particles enmeshed in a fibril polyvinyl chloride matrix that
possesses a unique porous structure with an average pore size of
45 nm (Fig. 2c) and a porosity of 65% (Fig. 2d) was incorporated in
the VRFB by Wei et al. [40]. These pores serve as ion transport
channels resulting in lower ohmic overpotential. Nevertheless, the
large pore size allows protons and hydrated vanadium ions to
diffuse through with greater freedom, causing poor selectivity and
high self-discharge. Consequently, the cell can only acquire a CE of
89.2%, a voltage efficiency (VE) of 87.0%, and an EE of 78.1%, which
are significantly lower than the commercial Nafion 115 at the same

current density of 50 mA cm~2. Therefore, to enhance the selec-
tivity of ion permeation and realize improved performance in the
flow cell than the traditional ion-exchange membranes, funda-
mental factors affecting the performance of the porous membranes
such as the morphology, preparation technique, additives, and so
on were researched extensively over the years. After the successful
implementation of the NF membrane in the VRFB, many re-
searchers optimized the fundamental aspects of the porous mem-
branes to achieve even better performance than the ion-exchange
membranes.

Polyethersulfone (PES) has also been widely studied as a
membrane material for the flow battery owing to its excellent
mechanical and chemical stability and tunable morphology. PES
membranes created by phase inversion methods usually hold an
asymmetric structure composed of a skin layer that defines the
selectivity and a porous support layer, which governs the ion
transport resistance. Although the large pore size of the skin layer is
preferred to reduce the ion transport resistance, it also leads to a
higher amount of active ion crossover. The asymmetric morphology
arising from the kinetic properties is usually driven by the con-
centration distribution, viscosity of the casting solution, activity
gradients of non-solvents, evaporation time, and humidity [41—45].
In general, increasing the porosity increases the proton conduc-
tivity, but the selectivity of the membranes is still a major chal-
lenge. Two different mechanisms of phase separation by immersion
precipitation and instantaneous and delayed demixing are usually
used to tune the morphology of the PES matrix. In a ternary system,
instantaneous phase separation occurs when the precipitation path
crosses the bimodal phase and forms two distinct phases imme-
diately after immersion, leading to the porous top layer, whereas in
delayed demixing, the phase separation does not occur for a
considerable amount of time after immersion because the precip-
itation path does not cross the binodal immediately, resulting a
dense skin layer [46].

Xu et al. [47] showed that the finger-like pores become larger
and the appearance of macrovoids decreases, as shown in the scan
electron microscope (SEM) images in Fig. 3a, owing to the delayed
demixing caused by the higher viscosity of the concentrated
polymer solution with increasing concentration of SPEEK in the cast
solution. SPEEK is highly hydrophilic and possesses excellent pro-
ton conductivity and miscibility with a large range of polymers
[48—50]. The porous skin layer obtained by the addition of SPEEK to
PES facilitates the diffusion of solvent molecules into the cast so-
lution transforming the finger-like pores to sponge-like pores by
changing the thermodynamic properties of the cast solution and
affecting the phase inversion method [51]. However, the CE and EE
obtained by the membrane in the full cell is only 92.8% and 78.4%,
respectively, which are lower than the traditional Nafion 115
membrane. Similarly, Chen et al. [52] reported a porous hierarchical
PES/SPEEK membrane obtained through the hard template method
using phenolphthalein as the template. They removed phenol-
phthalein from the pore walls of the PES/SPEEK/phenolphthalein
composite membrane, leading to well-defined nanoscale hierar-
chical pores on the selective layer. In addition, the increase in vis-
cosity of the casting solution owing to the incorporation of
phenolphthalein promotes the formation of a spongy structure, as
shown in Fig. 3b. However, with the increasing phenolphthalein
concentration, a decrease in the CE was observed owing to the
high vanadium permeability resulting from the larger and inter-
connected pores. The VRFB cell performance of the SPEEK/PES
composite was further improved by Li et al. [53]. They increased the
selectivity of the porous PES/SPEEK composite membrane by add-
ing double ion-selective layers (skin layer and top layer) by coating
an ultrathin layer of Nafion on top of the PES/SPEEK membrane
(Fig. 3c) created by the phase inversion method.
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Fig. 1. Schematic diagram of redox flow batteries and important indicators of the membrane.

The role of additives in the membrane morphology and thus on
the performance of the VRFB is explored by the aforementioned
work. They showed that with the increasing poly(vinylpyrrolidone)
(PVP) content and the increased molecular weight of PVP, it leads to
enlarged and more interconnected pores in a series of asymmetric
PES/PVP membranes. PVP causes thermodynamic enrichment and
kinetic hindrance during the phase separation process by reducing
the miscibility of casting solutions and simultaneously weakens the
interaction between the solvent and non-solvent by increasing the
viscosity of the casting solution [54,55]. As a result, the dramatic
upsurge of vanadium permeability and the membrane with the
highest PVP content displayed a poor CE of 66.8% and a VE of 81.6%,
and the EE first reaches a peak at 76.1% and declines to 54.6%.
However, additional optimization in the PVP content was able to
achieve a decent CE of 92.4% and an EE of 76.1%, which is similar to
the previously reported NF membranes. Furthermore, Yuan et al.
[56] proposed a highly stable composite PES-based membrane
doped with the corresponding salts of acidic phosphotungstic acid
(TPA) and alkaline PVP, created through acid-base interaction by
partially substituting the proton of TPA with alkaline nitrogen of
PVP (Fig. 3d), which provides well-connected cross-linking net-
works that enhance the selectivity of the stable PES matrix. The
rapid proton conduction occurs owing to the hopping of the pro-
tons from the TPA cluster to either the adjacent TPA or to the
alkaline nitrogen in the PVP, resulting a high VE and EE of 88% and
87% at a current density of 80 mA cm 2, respectively.

3. Hydrophilic modification

Among the different methods, hydrophilic modification is
another effective way to improve the conductivity of PES mem-
branes. To improve the ion conductivity of PES membranes,
photoinitiated adsorption was proposed by Li et al. [57]. They
grafted a vinyl monomer (sodium p-styrenesulfonate) on phase-
separated PSF membranes by UV-assisted polymerization that
enhances the hydrophilicity of PSF membranes. Initially, a photo
initiator called benzophenone was coated on the PES surface and
excited to a short lifetime single state by the irradiated photons.
As a result, benzophenone forms a radical site at PES to relax its
triplet state by extracting the primary hydrogen from the side
methyl groups of PES and initiates polymerization of vinyl
monomers (Fig. 4a). The grafted PES consists of a typical asym-
metric structure made of a thin skin layer and a spongy sublayer,
but the pore size after grafting decreases to 1.75 nm from
3.65 nm. Although the reduced pore size provides a steric hin-
drance to vanadium ions, the increasing hydrophilicity resulting
from the polymer grafting facilitates the diffusion of the vanadium
ions along with protons. In addition, the UV irradiation during the
polymerization process could possibly escalate the structural
degradation and reduce the chemical stability of the membrane.
Thus, to retain the structural integrity, polymer blends were
introduced to enhance the hydrophilicity, thereby increasing the
proton conductivity [47,58].
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Fig. 2. (a) Schematic principle of nanofiltration membranes in the VRFB. Reproduced from Zhang et al. [36] with permission from the Royal Society of Chemistry. (b) VRFB single-cell
performance of the tetraethyl orthosilicate—treated membrane under different current densities. Reproduced from Zhang et al. [37] with permission from the Royal Society of
Chemistry. Cross-sectional field emission scanning electron microscope (FESEM) image (c) and pore size distribution obtained using mercury intrusion porosimetry (d) of the
PV(/silica separator. Reproduced from Wei et al. [40] with permission from The Electrochemical Society. CE, coulombic efficiency; VE, voltage efficiency; EE, energy efficiency; PVC,

polyvinyl chloride.

Furthermore, Yuan et al. [59] proposed a highly ion-selective
membrane created by coating an 8-um thick layer of zeolites,
which are crystalline and microporous aluminosilicates with peri-
odic cage-like arrangements on a porous PES substrate (Fig. 4b).
Zeolites possess high proton conductivity owing to the existence of
large numbers of exchangeable cation sites that can be exchanged
for protons at the interlinked SiO4 and AlO4 tetrahedra (Fig. 4c). The
high selectivity was obtained by incorporating ZSM-35 as the
zeolite scaffold that contains pores of 0.42 nm x 0.54 nm, which is
smaller than the stoke radii of protons (0.24 nm for Hs03) but
larger than the hydrated vanadium ions (0.6 nm). The composite
membrane demonstrated high chemical stability and a low area
specific resistance of 0.98 Q cm?, leading to a current efficiency of
98.82% and an EE of 91.41% at a current density of 80 mA cm~2. On
the contrary, the battery using the Nafion 115 membrane can only
achieve a current efficiency of 93.19% and an EE of 82.30%, simply
owing to the higher vanadium ion permeability of Nafion
115—containing hydrophilic water channels of 2.5-nm diameter.
The zeolite-coated membrane has also displayed higher efficiencies
than Nafion 115 and a stable cycling performance for 100 cycles.
Meanwhile, Lu et al. [60] reported an uncharged highly selective
porous membrane by tuning the pore size and pore distribution of
the PES membrane using solvent treatment, as illustrated in Fig. 4d.
PES membranes with large and well-interconnected pores were
created by the phase inversion method and further adjusted by
introducing PVP into the casting solution. They further treated the

porous membranes by immersing into isopropyl alcohol (IPA), fol-
lowed by a controlled solvent evaporation process. During the
solvent treatment, a swelling force acts on the membranes causing
a reorganization of the polymer chains owing to the enhancement
in their mobility, whereas during the controlled evaporation pro-
cess, a cohesive force initiates the pore shrinkage. These two forces
are equal at equilibrium, but the balance disrupts owing to the
solvent treatment causing relatively higher shrinkage in the pores
than the starting states of the membranes. This unique concept of
achieving higher ion selectivity and the tuned morphology of the
PES matrix is chemically more stable than Nafion 115, and the ob-
tained CE and EE is higher than Nafion 115. However, the mem-
brane only exhibited stable cycling for 120 cycles, and further
improvement is needed to increase the lifetime of the membrane.

Similar perception of increasing the viscosity to limit the mass
exchange rate and allow crystallization much earlier to gain higher
crystallinity in the polyvinylidene fluoride (PVDF) ultrafiltration
membrane with hydrophobic pores (Fig. 5a) was reported by Wei
et al. [61]. PVDF is a semicrystalline polymer with at least four
distinctive phases a, B, v, and 9, and the crystallization together
with the liquid-liquid demixing plays a crucial role in the obtained
morphology of the phase-separated membranes. Li et al. [62] re-
ported a membrane configuration by mixing PVDF and sodium
allylsulfonate, where the pore size was controlled by the temper-
ature and the time of polymer crystallization, as demonstrated in
Fig. 5b. In this case, the morphology of the membranes was
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Fig. 3. (a) Cross-sectional morphology of the PES porous membrane prepared with different SPEEK contents. Reproduced from Xu et al. [47] with permission from the Royal Society
of Chemistry. (b) Cross-sectional morphology of the prepared membrane with the 30% phenolphthalein template. Reproduced from Chen et al [52] with permission from the
Elsevier. (c) The design of the porous PES/SPEEK composite membrane. Reproduced from Li et al. [53] with permission from the Royal Society of Chemistry. (d) The design of the
aromatic polymer-based composite ion-exchange membrane. Reproduced from Yuan et al. [56] with permission from the Elsevier. PES, polyethersulfone; SPEEK, sulfonated

poly(ether ether ketone).

dominated by the solid-liquid demixing during solvent evaporation
rather than the liquid-liquid phase inversion. The gradual growth of
crystals in the polymer solution forms globular grains that form a
nanoscale-sieved network by approaching each other. They have
also shown that the increased crystallization temperature and time
significantly enhance the crystallization rate because it promotes
polymer segment motion that generates more o phase, and part of
the B phase also converts into the o phase through rearrangements,
leading to a larger grain size and smaller pore size.

Owing to the high crystallinity and hydrophobicity, the PVDF-
based membrane possesses outstanding thermal, mechanical, and
chemical stability and higher selectivity owing to the intrinsically

high resistance to the mass transfer caused by the repulsion be-
tween the water molecules and hydrophobic wall surface. How-
ever, this high hydrophobicity caused from the low surface energy
can cause fouling owing to the strong repulsion between the PVDF
and aqueous electrolytes. Therefore, several studies have been
conducted to reduce the hydrophobicity of PVDF-based mem-
branes. In achieving this, PVDF was grafted with various hydro-
philic agents such as styrenesulfonicacid [63], sulfonated
poly(ethersulfone) and TPA [64], and SPEEK [65,66] to improve
proton conductivity. In addition, Zhou et al. [67] reported another
interesting strategy to overcome the defects of the polymeric ma-
terial by blending PVDF with ferroelectric ceramic such as barium
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Reproduced from Yuan et al [59] with permission from the John Wiley & Sons, Inc. (d) The influence of the solvent treatment on the morphology and performance of the porous PES
membrane. Reproduced from Lu et al. [60] with permission from the Royal Society of Chemistry. VRFB, all-vanadium redox flow battery; PES, polyethersulfone. (For interpretation of
the references to color in this figure legend, the reader is referred to the Web version of this article.)

titanate (BT) and grafting the blend with grafted polystyrene sul-
fonated acid. As the BT content in the membrane increased, more
oxygen vacancies were created that cause more F~ to enter into the
oxygen octahedron of BT, leading to the reduction in the degree of
hydrophilic sulfonic acid grafting on the branched chain. Although
this phenomenon decreases the ion conductivity, occurrence of
microphase separation provides favorable channels for proton
conduction between the highly hydrophobic C—F skeleton and
sulfonic acid group. Similarly, to obtain connected ion trans-
portation channels, Cao et al. [68] grafted hydrophilic PVP in the
pores and on the surface of PVDF-based porous membranes first by
immobilization of PVP on the PVDF substrate via cross-linking re-
action using potassium persulfate as a cross-linking agent, followed
by a solvent preswelling treatment using ethanol as the solvent, as
depicted in Fig. 5c. Owing to the decrease in porosity and the pore
size owing to PVP immobilization, the membrane can obtain a CE of
94.3% at 80 mA cm 2. However, the firm immobilization of PVP on
the pores tends to block the pores and increases the area specific
resistance of the flow cell, and a solvent preswelling treatment is
needed to enlarge the pores. In addition to PVDF, poly(vinylidene
fluoride-co-hexafluoropropylene) was also used owing to its high
hydrophobicity [69].

The polybenzimidazole (PBI)-based membrane, as another type
of well-investigated membranes, exhibited chemical stability
and good mechanical property. The drawback of this kind of ion-
exchange membranes is their moderate proton conductivity,
which usually manifested in unsatisfied VE. Recently, Ding et al.
[70] used a polycondensation method to obtain the sulfonated
polybenzimidazole (SPBI) membranes, enhancing the water uptake
capability. The SPBI membrane shows higher average CE, VE, and EE
values than that of the Nafion 115 membrane. Peng et al. [71] tried
to graft non-ionic N-substitution hydrophilic side chains into the
PBI membranes, forming hydrophilic clusters, which make the
proton transfer more efficient.

4. Other modifications

Apart from introducing hydrophobic polymers, another inter-
esting strategy to enhance the selectivity is to exploit Donnan's
exclusion mechanism by introducing positively charged groups on
the pore walls to restrict the permeability of vanadium ions
through the pores and thereby increase the membrane's selectivity.
In 2013, Zhang et al. [72] created a porous membrane with chlor-
omethylated polysulfone resin and pyridine by the vapor-induced
phase inversion method that looks similar to a bulk sponge with
thousands of highly symmetrical micron-sized pores separated by
ultrathin walls. All pores are grafted with weak alkaline groups and
possess a uniform positive charge. As a result, protons can travel
freely, but the large vanadium ions are rejected owing to Donnan's
exclusion and the size sieving effect. By loosening the pore walls,
the membrane can achieve proton conductivity similar to an
aqueous sulfuric acid solution, and at the same time, it acts as a
multilayered barrier to the vanadium ions, leading to an EE higher
than 81% at 120 mA cm™2. This specially designed membrane
morphology provides an excellent solution for increasing the ion
permeation selectivity while achieving a high VE and thus a higher
EE.

Except for the size sieving and Donnan's exclusion, another
strategy to enhance the selectivity is layer-by-layer (LBL) self-
assembly [73—75]. A composite membrane possessing high
selectivity for the vanadium ions was demonstrated by leaching out
low-molecular-weight imidazole from a composite membrane of
imidazole and SPEEK, followed by assembling two oppositely
charged polyelectrolytes, poly(diallyldimethylammonium chloride)
(polycation) and poly(sodium styrene sulfonate) (polyanion), on
the obtained porous substrate. Although the membrane exhibited
higher proton conductivity and high selectivity compared with the
commercial Nafion membrane, the coulombic efficiencies obtained
by the membrane at various current densities are much lower
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compared with Nafion 115 [75]. There are still other methods
existing or being explored to improve the membrane performances
not exhibited in this review. More effective strategies will be
developed constantly, and the large-scale application of RFBs is
being realized gradually. Part of the typical membrane materials
and their properties are listed in Table 1 for brief comparison.

Table 1
Comparison of properties of typical membrane materials.

Material Electrolyte CE EE VE Current Density Ref
PAN All-vanadium 95% 76% — 80 mA cm 2 [36]
PVC/Si All-vanadium 89.2% 78.1% 87.0% 50 mA cm? [40]
PES All-vanadium 92.8% 784% — 80 mA cm 2 [47]
PES/SPEEK All-vanadium 91.12% — 86.10% 80 mA cm 2 [51]
PES/PVP All-vanadium 99% 81% 82% 140 mA cm 2 [56]
PSF All-vanadium 90.3% 78.4% 86.8% 80 mAcm 2 [57]
PES All-vanadium 98.63% 91.41% 92.68% 80 mA cm 2 [59]
PES All-vanadium 98.95% 89.69% 90.65% 80 mA cm 2 [60]
PVDF All-vanadium 95% 78.6% 82.7% 80 mAcm 2 [61]

CE, coulombic efficiency; EE, energy efficiency; VE, voltage efficiency; PSF, poly-
sulfone; PVP, poly(vinylpyrrolidone); PVDF, polyvinylidene fluoride; PES, poly-
ethersulfone; PVC, polyvinyl chloride; SPEEK, sulfonated poly(ether ether ketone);
PAN, polyacrylonitrile.

5. Conclusions and outlook

Improving the properties of the membrane materials is the key
point to obtain high performances in RFBs. There is significant
progress in developing the effective modifying method of the
membranes in recent decades. One of the main strategies is con-
trolling the pore size to change the ion selectivity, using the
different radii between protons and transition metal cations and
satisfying the results have been achieved. This strategy is limited by
the great dependence on choosing the electrolyte containing the
ions whose radius meets the requirement. Hydrophilic modifica-
tion as another strategy is an effective way to improve proton
conductivity of the membranes, but it is also facile to lead to the
crossover of transition metal cations. Other methods such as
introducing charge groups on the membranes and constructing LBL
structures are also summarized in this review.

To realize the wide application of RFBs, there is still a long way to
go by exploring membrane materials with more superior proper-
ties. First, the cost of the membrane materials should be reduced so
that the competitiveness of RFBs could be promoted compared
with other electrochemical systems for large-scale energy storage.
Then, ion selectivity needs to be improved to ensure the long
cycling life of RFBs. Besides, the pore size should not be too large
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and ion selectivity should be kept within a reasonable range to
reduce the crossover of active ions. Moreover, the chemical stability
of the membranes is the basic guarantee for stable operation of
RFBs, requesting the membrane material to be kept stable under
harsh chemical conditions. Finally, the mechanical strength of the
membrane needs to be high enough to withstand the squeeze from
the assembling of the battery and the pressure from proton diffu-
sion during cycling.
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